NP Calculator

NP Calculators Orbits Included (Python Code):

Please see links for code. Explanations are included at bottom:

Python File

Text File

I have included screenshots of this code being run here:

All (1/3) (Earth System) Planetary Orbits Can Be Calculated As a Result Of Only The Diameter Of The Sun Using These Ratios:

This currently calculates:

  • Lagrange L1-L3 (Ease Points)
  • Electron Maximum Configurations
  • Elemental Shell Ratios
  • Planetary Systems At 1/3 Ratios (Our system is 1/3)
  • Uses no weights or velocities, only the ratios of the system.

All (1/3) (Earth System) Planetary Orbits Can Be Calculated As a Result Of Only The Diameter Of The Sun Using These Ratios:

Due to 1/2 divide mid-system; Ratios rest at the cross point
All systems follow perfect ratios pre-orbit

Found using only 1/2 (2) and 1/3 (3) as a division on the suns diameter.

This will be used as a base ratio set for overtime calculations using Ease Point methods.

http://arisopus.com/cells/np-calculators-orbits-included-python-code/ for code files.

Input Instruction:

Initial Ratio Calculations:

Wave Rules:

Orbitals:

Orbit Plots And Easepoints:

From Ease Point code:

# You will see this when the inputs always give the following ratio
no matter what you enter:

#Shell 1 Ratio is 2.0
#Shell 2 Ratio is 8.0
#Shell 3 Ratio is 18.0
#Shell 4 Ratio is 32.0
#Shell 5 Ratio is 32.0
#Shell 6 Ratio is 18.0
#Shell 7 Ratio is 8.0
#Shell 8 Ratio is 2.0

'Whole Natural Ratio is 0.1111111111111111'
'Whole Shell Ratio is 0.5'

These ratios are used as divisors into each other,
where you start with only two and the inputs,
and continue through divisions to reach 72 (3).

Binary Base 1/2, 1/4, 1/8:

https://www.dropbox.com/s/esq2pd8vp0au625/Binary%20Simplification

This is a simpler way to determine numbers using 1’s and 0’s.
Intended for NP calculations & other number based systems.
These formats allow for longer calculations using wave and circle ratios over square (power to) functions
The divisors allow for odd numbers to come from even inputs and vice versa:

#Base 1/2
#0 = .5          0 = .5 or 1/2
#1 = 1           1 = 0 + 0
#2 = 2           2 = 1 + 1
#3 = 3           3 = 2 + 1
#4 = 4           4 = 2 + 2
#5 = 5           5 = 2 + 2 + 1
#6 = 6           6 = 4 + 2
#7 = 7           7 = 4 + 2 + 1
#8 = 8           8 = 4 + 4
#9 = 9           9 = 4 + 4 + 1
#10 = 10         10 = 4 + 4 + 2

#Base 1/2 follows atomic/universal laws

#Base 1/4
#0 = .25         0 = .25 or 1/4
#1 = .5          1 = 0 + 0
#2 = 1           2 = 1 + 1
#3 = 1.5         3 = 2 + 1
#4 = 2           4 = 2 + 2
#5 = 2.5         5 = 2 + 2 + 1
#6 = 3           6 = 4 + 2
#7 = 3.5         7 = 4 + 2 + 1
#8 = 4           8 = 4 + 4
#9 = 4.5         9 = 4 + 4 + 1
#10 = 5          10 = 4 + 4 + 2

#Base 1/4 will help to calculate syncopation and divisions along with dual systems

#Base 1/8
#0 = .125        0 = .125 or 1/8
#1 = .25         1 = 0 + 0
#2 = .5          2 = 1 + 1
#3 = .75         3 = 2 + 1
#4 = 1           4 = 2 + 2
#5 = 1.25        5 = 2 + 2 + 1
#6 = 1.5         6 = 4 + 2
#7 = 1.75        7 = 4 + 2 + 1
#8 = 2           8 = 4 + 4
#9 = 2.25        9 = 4 + 4 + 1
#10 = 2.5        10 = 4 + 4 + 2

#Base 1/8 will help to calculate more complex divisions or systems

‘Using a smaller fraction does not result in greater resolution when using these systems; as they all scale’
‘What it does is allow for easier use at the scaled levels; or when reading 3rd ratios’

#Base 1/8 will help to calculate more complex divisions or systems



Python File:

https://www.dropbox.com/s/5q3x6cdqbk3sh5i/First%20Iteration%3B%20NP%20Calculator.py?dl=0

Text File:

https://www.dropbox.com/s/lu3ufxs1epf51o5/NP%20Formulas.txt?dl=0

Download Python, or click the links so that you can read this with ease
If you click the Python link it will color code everything
This makes it very easy to understand.

Please use the downloaded text file rather than copying from this site …
as the code has been truncated to allow easier reading

Improved Code For Universal Laws:

(Images Added To Bottom For Easy Reading; Color Coded, With Detailed Explanation.)

# Python code for Ease Point calculations and Large Body Orbits
### Updated 12/17/18 to add electron count maximums using 1/2 subdivides
### Updated 1/1/19 to add electron shell ratios using 1/2 subdivides
### Updated 1/1/19 to improve previous ratios for L1-L3, along with initial values

#Please see www.arisopus.com if you have any questions on syncopation 
or wave relationships.


                      #------------ #Begin Code.# ------------#

input("Python code for Ease Point (formerly Lagrange) calculations, 
      Atomic Relationships and Large Body Orbits\n"
      "### Updated 12/17/18 to add electron count maximums using 1/2 subdivides\n"
      "### Updated 1/1/19 to add electron shell ratios using 1/2 subdivides\n"
      "### Updated 1/1/19 to improve previous ratios for L1-L3 
      along with initial values\n\n\n"

      "Please see http://www.arisopus.com if you have any questions on syncopation 
      or wave relationships.\n\n\n"
      
      "Press Enter To Continue ...\n\n\n"
      "# Input = Total number of points\n"
      "# N     = Number of points traveled\n"
      "# NP    = Number of points remaining\n\n"
      
      "When calculating ease points, please use diameter from nucleus to first body\n"
      "Enter the radius from nucleus for n\n"
      "Enter 0 for np if there is no third body to follow\n\n"
      
      "---\n\n"
      
      "Helpful Measurements:\n\n"
      
      "Diameter Sun to Earth: 300000000 km\n"
      "Radius Sun to Earth: 150000000 km\n\n"
      "Diameter Earth to Moon: 750000 km\n"
      "Radius Earth to Moon: 375000 km\n")

IN = float(input("Enter Input: "))
N = float(input("Enter N: "))
NP = float(input("Enter NP: "))

IN = 0.5 if IN == 0 else IN
N = 0.5 if N == 0 else N
NP = 0.5 if NP == 0 else NP

input = IN
n = N
np = NP

# - Used to allow lowercase letters in code. Ensures no division by zero errors occur.

# input = total number of points
# n     = number of points traveled
# np    = number of points remaining


                         # ----------------- #
                         #    Read Ratios    #
                         # ----------------- #

sub_divide_half = 2

'Example (Fourth, Half): 10 / 4 / 5 / 5 = 1.0; 100 / 1.0 = 100' \
                                        #or see it as .01; 10 / .01 = 100

'Example (Third, Half): 10 / 3 / 5 / 5 = 1.33 repeating; 100 
                                             / 1.33 repeating = 75' \
                   #or see it as .133 repeating; 10 / .133 repeating = 75

'   This tells us that universal laws follow 1/2, 1/4, 1/3, 4/8 ratios'
'   Add both maximum shell ratios (+,-) together and you get 1, 1/2, 2/3, 1'
# That is 2, 8, 18, 32, 32, 18, 8, 2 - Or the function of a sine wave

sub_divide_half_example = 1/2 #; = 2
sub_divide_third_example = 6 / 4 / (1/2) #; = 3
                         # 1 and 1/3 is one quarter away from a full fourth
                         # 100 - 25 (1/4) / 3 (33.33) = 25

'    #4/8 fits into this, because it can equal both one half of 4, and one half of 3'
'                  #It can also be seen as a function of 1/4'
# 2/6 equals 1/2 of 1/3 ... or 1/3 of 1/4
# 1/4 equals 2/8 and 1/8 or 3/8 is halfway between fourths

'   This shows that 3rds grow in 4th intervals, and require one full fraction over
'   the whole to syncopate' \
'   This is the same as saying what is 9 (3*3) broken into 4 inside a bucket of 10 (100)'
'   Or 100 / 3 / two separate 50s'

# Sixths can give you halves, thirds and quarters. Quarters can give you halves and 
  wholes. They scale up and down.


#---------------------#


# - There is no need to use any other ratios. They all work with each other.
# - It is helpful to learn them.
# - Knowing all fractional scales within another up to 100 will set your mind to know
this all by heart
#    (intuition)


# - These patterns are found in everything from atoms, to galaxies ...
# to behavioral patterns, brain waves and DNA.


                         # --------------- #
                         #  System Ratios  #
                         # --------------- #


#init                    = input / sub_divide_half
#baselimiter             = init / sub_divide_half
#sub_divide_from_ceiling = baselimiter / input

#ds_syncopation_4_5      = input / sub_divide_from_ceiling / sub_divide_half
#syncopation_point       = sub_divide_from_ceiling * ds_syncopation_4_5 / sub_divide_half
#shell_half              = init / baselimiter

#whole_ratio_combine     = baselimiter + baselimiter / syncopation_point
#whole_ratio              = whole_ratio_combine - syncopation_point


' Please note that all current binary formats are incapable of handling ... 
perfect circle ratios;' \
' Because of this I am required to write a new binary decimal system which can
' Doing so should prove we can get the sub half using only inputs, 
   just like I did with the shell ratios' \
    # This could take me months, as I have never coded binary formats.
        # For now, you may see an occasional rounding error due to the way 
                                                        binary bases have been written.


#--------------------#---------------------#---------------------#--------------------#
                                                                       # Initial Ratios

init = input / sub_divide_half

init = 0.5 if init == 0 else init


# - This gives you half of the input, or the halfway point between two planets or orbits

# IE:
# (6); 12 / 2 = 6


#--------------------#---------------------#---------------------#--------------------#
                                                                       # Initial Ratios

baselimiter = init / sub_divide_half

baselimiter = 0.5 if baselimiter == 0 else baselimiter


# - This uses the input combined with the subdivide. 
It turns the system into a ratio of fourths through 8.

#IE:
# (3); 6 / 2 = 3


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Subdivides

sub_divide_from_ceiling = baselimiter / input


sub_divide_from_ceiling = 0.5 if sub_divide_from_ceiling == 0 
else sub_divide_from_ceiling


#- This uses the baselimiter to pull the input ratios in the form of a decimal 
IE: 1/4 (.25).
#- This always equals .25
#- That information will become much more meaningful when binary can hold ratios 
                                                               to obtain a subdivide ..
#- ... Which uses all inputs ( Input / N / NP )


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Subdivides

ds_syncopation_4_5 = input / sub_divide_from_ceiling / sub_divide_half


#IE:
# (24); 6 / 3 * 12 = 24
#
# or
#
# (24); 12 / .25 / 2 = 24 ***** Preferable


ds_syncopation_4_5 = 0.5 if ds_syncopation_4_5 == 0 else ds_syncopation_4_5


' This doubles the system by dividing the input in half twice (4). 
It creates 5 points through 4 spacings.'
' It acts as either a subdivide, 
or adds a new system next to what is entered as the input'
        
        #- In other words, it takes the nucleus and first following point, 
        and gives an opposite point, plus a new point
        #- Or it breaks it all down into 4ths.
        #- The input is typically a diameter which houses 2 radius'
        #- Which leads to the next nucleus; fourths need halves or sixths to grow.
                                                     Thirds need two fourths or sixths.

# With thirds, you then get 15/100ths, which lead to 6.66 and allow a new syncopation
#  or continue to 5/100ths until and you can then refill with halves/quarters
# Need to write a ds which includes 6th point for new group functions.
# DS means dual system; to be used for later cascading calculations/combinations.


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Subdivides

syncopation_point      = sub_divide_from_ceiling * ds_syncopation_4_5 / sub_divide_half


syncopation_point = 0.5 if syncopation_point == 0 else syncopation_point


#- This is the syncopation point, or point which will be centered in the 
forthcoming wave as shells ...
#- ... or orbits fill, or so long as the ratios are satisfied to reach this point. 
If the ratios do not match ...
#- ... you will need to subdivide into a new ratio which does

' It does this as a matter of 4ths, where syncopation is at halfway between 
the nucleus and orbital' \
' sync * 2 is where a second system can begin' \
' sync * 3 is where you reach a third ratio; it would either break, divide, 
or require a satisfying addition' \

    # This is because we are thinking primarily in fourths. 
    This can also be done in thirds
    # Thirds require closed systems, and are found more in biology than planets
    # Fourths can fill thirds, and thirds don't require fourths 
    but we need to keep a balance

    # We will find more third type systems as a matter of confined spaces.
      # It is my own theory that fourths are generally going to be found in 
      planetary systems and open space


#--------------------#---------------------#---------------------#--------------------#
                                                                               # Halves

shell_half              = init / baselimiter


shell_half = 0.5 if shell_half == 0 else shell_half


# - This always gives you 2. There are many ways to do this.


#--------------------#---------------------#---------------------#--------------------#
                                                                            # Additives

whole_ratio_combine     = baselimiter + baselimiter / syncopation_point


whole_ratio_combine = 0.5 if whole_ratio_combine == 0 else whole_ratio_combine


# - This will always add one to the system ratio. 
It will be used to calculate movements over time


#--------------------#---------------------#---------------------#--------------------#
                                                                            # Additives

whole_ratio             = whole_ratio_combine - syncopation_point


whole_ratio = 0.5 if whole_ratio == 0 else whole_ratio


'Another way to picture this is ((Input + Input + n + n + np) / n) 
                                                     - ((Input + Input + n + np) / n )'


#---------------------#


                         # ------------------#
                         #    Shell Ratios   #
                         # ------------------#


#max_electron_count      = init / ((np/sub_divide_half) * (np/sub_divide_half)) * input

#shell_1_ratio           = input / syncopation_point / sub_divide_half
#shell_2_ratio           = input / syncopation_point * shell_1_ratio
#shell_3_ratio           = input / syncopation_point * (sub_divide_half 
                                + sub_divide_from_ceiling) * shell_1_ratio
#shell_4_ratio           = input / syncopation_point * shell_2_ratio
#shell_5_ratio           = input / syncopation_point * shell_2_ratio
#shell_6_ratio           = input / syncopation_point * (sub_divide_half 
                                + sub_divide_from_ceiling) * shell_1_ratio
#shell_7_ratio           = input / syncopation_point * shell_1_ratio

#whole_natural_ratio     = shell_4_ratio / shell_3_ratio / shell_2_ratio / shell_1_ratio
#whole_shell_ratio       = (shell_7_ratio / shell_2_ratio) 
                           / (shell_6_ratio / shell_3_ratio)
#                          / ( shell_5_ratio / shell_4_ratio) / shell_1_ratio

#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_1_ratio           = input / syncopation_point / sub_divide_half
      #shell_half / shell_full_count


shell_1_ratio = 0.5 if shell_1_ratio == 0 else shell_1_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_2_ratio           = input / syncopation_point * shell_1_ratio
      #easepoint_sub_ratio / 100


shell_2_ratio = 0.5 if shell_2_ratio == 0 else shell_2_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_3_ratio           = input / syncopation_point * (sub_divide_half 
                           + sub_divide_from_ceiling) * shell_1_ratio


shell_3_ratio = 0.5 if shell_3_ratio == 0 else shell_3_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_4_ratio           = input / syncopation_point * shell_2_ratio


shell_4_ratio = 0.5 if shell_4_ratio == 0 else shell_4_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_5_ratio           = input / syncopation_point * shell_2_ratio


shell_5_ratio = 0.5 if shell_5_ratio == 0 else shell_5_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_6_ratio           = input / syncopation_point 
                          * (sub_divide_half + sub_divide_from_ceiling) * shell_1_ratio


shell_6_ratio = 0.5 if shell_6_ratio == 0 else shell_6_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

shell_7_ratio           = input / syncopation_point * shell_1_ratio


shell_7_ratio = 0.5 if shell_7_ratio == 0 else shell_7_ratio


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

max_electron_count      = init / ((np/sub_divide_half) * (np/sub_divide_half)) * input


max_electron_count = 0.5 if max_electron_count == 0 else max_electron_count


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Shell Ratios

whole_natural_ratio     = shell_4_ratio / shell_3_ratio / shell_2_ratio / shell_1_ratio


whole_natural_ratio = 0.5 if whole_natural_ratio == 0 else whole_natural_ratio


whole_shell_ratio       = (shell_7_ratio / shell_2_ratio) 
                          / (shell_6_ratio / shell_3_ratio)
                          / ( shell_5_ratio / shell_4_ratio) / shell_1_ratio

whole_shell_ratio = 0.5 if whole_shell_ratio == 0 else whole_shell_ratio

#- This shows that all objects in the universe are built on 1/2, 1/3, 1/4 (.5, .33, .25)
ratios
#- Where the system is a perfect circle at 1.5; as groups of quarters equaling 6
#- Where 18 / 3 equals 6, divided by 4 equals 1.5; 
and the 6 can be doubled to turn the third into a fourth (12)
'    Coming back to; thirds house fourths, and fourths house thirds'

# You will see this when the inputs always give the following ratio 
no matter what you enter:

            #Shell 1 Ratio is 2.0
            #Shell 2 Ratio is 8.0
            #Shell 3 Ratio is 18.0
            #Shell 4 Ratio is 32.0
            #Shell 5 Ratio is 32.0
            #Shell 6 Ratio is 18.0
            #Shell 7 Ratio is 8.0

'Whole Natural Ratio is 0.1111111111111111'
'Whole Shell Ratio is 0.5'


#---------------------#


                        # -----------------#
                        #    Easepoints    #
                        # -----------------#


#easepoint               = baselimiter / (input / n) /100
#easepoint_subdivide     = easepoint * sub_divide_half
#easepoint_sub_ratio     = input / easepoint

#L1                      = input * .495
#L2                      = input * .505
#L3                      = input * (1/2)

#L1_third_body_no_impedance       = easepoint_subdivide * .495
#L2_third_body_no_impedance       = easepoint_subdivide * .505
#L2_third_body_earth_to_jupiter   = input * 0.0015
#L3_third_body_no_impedance       = easepoint_subdivide * (1/2)


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Easepoints

easepoint               = baselimiter / (input / n) /100


easepoint = 0.5 if easepoint == 0 else easepoint


#- This gives you the orbital distance from a planet to farthest stable reach (moon)
#- You can then divide the input values by the easepoint to break the distance 
from the sun to the moon into fractions
#- In this case fourths (400), as both were divided by half
'   Or eights if you consider the diameter'

# - To be used later:
   # convert_to_whole_100 = input / (input / 4 / 5 / 5)

#--------------------#---------------------#---------------------#--------------------#
                                                                     # Easepoint Ratios

easepoint_subdivide     = easepoint * sub_divide_half


easepoint = 0.5 if easepoint == 0 else easepoint


# - This gives you the diameter for the easepoint


#--------------------#---------------------#---------------------#--------------------#
                                                                     # Easepoint Ratios

easepoint_sub_ratio     = input / easepoint


easepoint_sub_ratio = 0.5 if easepoint_sub_ratio == 0 else easepoint_sub_ratio


#- This gives you the total amount of times the new orbital goes into the input 
(mentioned earlier).
'  It is a ratio equivalent to shell 2'
'   \divide by 100, and you get 8; remember how 10 / 2 / 5 / 5 = 20?'
#- In atoms (8); used later on when calculating shells.

           # Use these inputs so you can see what I mean

           #Enter Input: 300000000 - sun to earth diameter
           #Enter N: 150000000 - sun to earth radius
           #Enter NP: 0 - no third body; calculating sun to earth ease points/orbitals


#--------------------#---------------------#---------------------#--------------------#
                                                                  # Easepoint Locations

# L1 is = Diameter Body To Body * .495
# L2 is = Diameter Body To Body * .505
# L3 is = Diameter Body To Body * .5

    # Works for all non-interferent orbits. Larger bodies are allowed due to syncopation.
    # Large bodies are a result of the ratios of the system;
    # Size and influence are always subject to what the center object can allow. 
    Never the other way around

'  # If there were an object with greater influence, items would syncopate to this object'
'  # The different sizes and distances are what hold systems together, 
   but they exist because of eachother'
'  # The same ratios work everywhere'

'This is why you can calculate all of the systems Easepoints 
using only the ratio of the sun to one object'

# L2 E to M w/ Jupiter included; Diameter Body to Body (300,000,000) * .5015
# L2 E to M w/ Jupiter included; (using E to M diameter; 750,000) * .6
# E to M uses thirds.
# S to E uses fourths.
# Because these are all whole circle ratios, technically 
they are actually all quarter steps

'  # That is the significance of the whole natural ratio; 0.1111111111111111 repeating'
'  # It is what allows .333, .666, .999 to be used with even numbers'
'  # These ratio sets are used throughout all of these equations, and our universe'

#--------------------#---------------------#---------------------#--------------------#
                                                                   #Easepoint Locations

L1                      = input * .495


L1 = 0.5 if L1 == 0 else L1


# - This turns the ratio for nucleus or body to body into halves and thousandths
'           L1 being closer to the sun'


#--------------------#---------------------#---------------------#--------------------#
                                                                    #Easepoint Location

L2                      = input * .505


L2 = 0.5 if L2 == 0 else L2


# - This turns the ratio for nucleus or body to body into halves and thousandths
'           L2 being away from the sun'


#--------------------#---------------------#---------------------#--------------------#
                                                                    #Easepoint Location

L3                      = input * (1/2)


L3 = 0.5 if L3 == 0 else L3


# - This turns the ratio for nucleus or body to body into halves and thousandths
'  L3 being half the diameter from sun to first body'


#--------------------#---------------------#---------------------#--------------------#
                                                                   #Easepoint Locations

L1_third_body_no_impedance = easepoint_subdivide * .495


L1_third_body_no_impedance = 0.5 if L1_third_body_no_impedance == 0 
else L1_third_body_no_impedance


# - This turns the ratio for easepoint or body to body into halves and thousandths
'           L1 being closer to the sun'
# - .0011 can be used to get 330,000 but it does not fall 
between syncopations from E to M w/ Jupiter
# - .495 will be the perfect circle ratio
# - I will need to write this out starting from Mercury to ensure all results are correct.
    # Other planets need to be taken into account for this to work.
    # There is a reason the L points are believed to be unstable, 
    and that is due to missing numbers.


#--------------------#---------------------#---------------------#--------------------#
                                                                    #Easepoint Location

L2_third_body_no_impedance       = easepoint_subdivide * .505
L2_third_body_earth_to_jupiter   = input * 0.0015


#\
  #- L2 w/ Jupiter can also be be .5015, 
     but due to binary restrictions, using .5015 results in a rounding error'
  #- The error can be bypassed, but I cannot give E to M with Jupiter included 
     with 100% accuracy yet.
'    # This matches current calculations, but there is still a lot of work to be done.'
'    # None of this has anything to do with weights, but atomic ratios'
'    # Weights are a result of the ratios, and what the closed system allows for shape' \
'    # The shape dictates the polarities, which in turn dictate the weights'


L2_third_body_earth_to_jupiter = 0.5 if L2_third_body_earth_to_jupiter == 0 
else L2_third_body_earth_to_jupiter
L2_third_body_no_impedance = 0.5 if L2_third_body_no_impedance == 0 
else L2_third_body_no_impedance


# - This divides the ratio for easepoint or body to body into halves and thousandths
'           L2 being away from the sun; for the first 3 planets, 
            towards another syncopation (Jupiter)'
'           What I still need to work out is multiple planet syncopations'


L3_third_body_no_impedance       = easepoint_subdivide * (1/2)


L3_third_body_no_impedance = 0.5 if L3_third_body_no_impedance == 0 
else L3_third_body_no_impedance


# - This divides the ratio for easepoint or body to body into halves and thousandths
'  L3 being half the diameter from sun to first body'


#---------------------#


                        # -----------------#
                        #     Falloffs     #
                        # -----------------#


#wave_falloff_for_original_system_1_4 = input * 64
#wave_falloff_for_original_system_1_3 = input * 60
#wave_falloff_os_ratio_check_1_4 = input * 64 / 128
#wave_falloff_os_ratio_check_1_3 = input * 60 / 120
#au_count_for_falloff_1_4 = wave_falloff_for_original_system_1_4 / 150000000
#au_count_for_falloff_1_3 = wave_falloff_for_original_system_1_3 / 150000000


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Wave Falloff

wave_falloff_for_original_system_1_4 = input * 64
wave_falloff_for_original_system_1_3 = input * 60

wave_falloff_for_original_system_1_4 = 0.5 if wave_falloff_for_original_system_1_4 == 0 \
    else wave_falloff_for_original_system_1_4
wave_falloff_for_original_system_1_3 = 0.5 if wave_falloff_for_original_system_1_3 == 0 \
    else wave_falloff_for_original_system_1_3


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Wave Falloff

wave_falloff_os_ratio_check_1_4 = input * 64 / 128
wave_falloff_os_ratio_check_1_3 = input * 60 / 120


wave_falloff_os_ratio_check_1_4 = 0.5 if wave_falloff_os_ratio_check_1_4 == 0 \
    else wave_falloff_os_ratio_check_1_4
wave_falloff_os_ratio_check_1_3 = 0.5 if wave_falloff_os_ratio_check_1_3 == 0 \
    else wave_falloff_os_ratio_check_1_3


#--------------------#---------------------#---------------------#--------------------#
                                                                         # Wave Falloff

au_count_for_falloff_1_4 = wave_falloff_for_original_system_1_4 / 150000000
au_count_for_falloff_1_3 = wave_falloff_for_original_system_1_3 / 150000000


au_count_for_falloff_1_4 = 0.5 if au_count_for_falloff_1_4 == 0 \
    else au_count_for_falloff_1_4
au_count_for_falloff_1_3 = 0.5 if au_count_for_falloff_1_3 == 0 \
    else au_count_for_falloff_1_3


'Wave falloff can calculate system end points. Given these ratios; 
and the wave function of atomics;' \

'Calculated falloff comes to 64, or 128 AU; Not previously thought 122.' \
    'This is equivalent to the 32nd (fourth) shell ratio'

        # You can see that this is correct by entering the last element 
          in the periodic table as an input

        # Using the function of a circle ...
            #Enter Input: 118
            #Enter N: 3.6875
            #Enter NP: 114.3125

'Easepoint Sub Ratio is 12800.0'

#Amplitude Ratios:

#             Shell 1 Ratio is 2.0
#             Shell 2 Ratio is 8.0
#             Shell 3 Ratio is 18.0
#             Shell 4 Ratio is 32.0
#             Shell 5 Ratio is 32.0
#             Shell 6 Ratio is 18.0
#             Shell 7 Ratio is 8.0

#Whole Natural Ratio is 0.1111111111111111
#Whole Shell Ratio is 0.5


#---------------------#


                                # ------------------#
                                #    Wave Rules     #
                                # ------------------#


#orbital_follow_np        = shell_half * (np / n)
#orbital_follow_n         = shell_half * (n / np)

#shell_full_count         = sub_divide_from_ceiling * ds_syncopation_4_5 
                              * (sub_divide_half)
#full_count_ratio = shell_7_ratio / shell_6_ratio / shell_5_ratio \
#                   / shell_4_ratio / shell_3_ratio / shell_2_ratio / shell_1_ratio

#electron_count_detect    = full_count_ratio * IN * 20000000 * sub_divide_half


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Wave Rules

orbital_follow_np         = shell_half * (np / n)


orbital_follow_np = 0.5 if orbital_follow_np == 0 else orbital_follow_np


# This pulls the ratio for points remaining over points traveled. 
It will give you fractional increments.
# This is not functional at the moment but left as a reminder


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Wave Rules

orbital_follow_n         = shell_half * (n / np)


orbital_follow_n = 0.5 if orbital_follow_n == 0 else orbital_follow_n


# This is not functional at the moment but left as a reminder


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Wave Rules

shell_full_count        = sub_divide_from_ceiling * ds_syncopation_4_5 
                           * (sub_divide_half)


shell_full_count = 0.5 if shell_full_count == 0 else shell_full_count


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Wave Rules

full_count_ratio = shell_7_ratio / shell_6_ratio / shell_5_ratio \
                   / shell_4_ratio / shell_3_ratio / shell_2_ratio / shell_1_ratio


full_count_ratio = 0.5 if full_count_ratio == 0 else full_count_ratio


'These two are incomplete, and meant for over time calculations'


#--------------------#---------------------#---------------------#--------------------#
                                                                           # Wave Rules


electron_count_detect = full_count_ratio * IN * 20000000 * sub_divide_half


electron_count_detect = 0.5 if electron_count_detect == 0 else electron_count_detect


'These two are incomplete, and meant for over time calculations'


#--------------------#---------------------#---------------------#--------------------#-


# -- PLEASE READ TO UNDERSTAND: -- #


# You can calculate outwards and then come back

# When you have 10 electrons, this results in a falloff of 640; 
which is a proponent of 32, which is the half, or ...
# ... Polarity opposition point for a sine wave
# It tells us that atoms are built on whole number ratios up to 10

# If you divide the maximum allowed electron count for the periodic table (118) by 32, 
it results in 3.6875
# You can then enter this number into the calculator:

# Enter IN: 118
# Enter N: 3.6875
# Enter NP: 114.3125

# This is the function of a perfect circle. As a whole; dividing the input by the results  
...

#Orbit Plots:

#Wave Falloff for Original System Ratio Check is 59.0
' #Wave Falloff for Original System is 7552.0. Divide this by 118, and you get 64; 
or 128 to 59'
' 59 is 1/4 of the DS_syncopation'
#AU Count For Original System is 5.0346666666666663e-05

#Orbital Easepoint is 0.00921875.
#Easepoint Subdivide is 0.0184375
' #Easepoint Sub Ratio is 12800.0; a function of 32; same as the wave falloff '

# L2 and L3 are whole counterparts. L1 is a proponent of allowed space, 
or syncopation between two points.

# It is why all of this can be done.


#-----------------#


init = 0.5 if init == 0 else init
baselimiter = 0.5 if baselimiter == 0 else baselimiter
easepoint = 0.5 if easepoint == 0 else easepoint
sub_divide_from_ceiling = 0.5 if sub_divide_from_ceiling == 0 
else sub_divide_from_ceiling
ds_syncopation_4_5 = 0.5 if ds_syncopation_4_5 == 0 else ds_syncopation_4_5
syncopation_point = 0.5 if syncopation_point == 0 else syncopation_point
shell_half = 0.5 if shell_half == 0 else shell_half
whole_ratio_combine = 0.5 if whole_ratio_combine == 0 else whole_ratio_combine
whole_ratio = 0.5 if whole_ratio == 0 else whole_ratio
shell_1_ratio = 0.5 if shell_1_ratio == 0 else shell_1_ratio
shell_2_ratio = 0.5 if shell_2_ratio == 0 else shell_2_ratio
shell_3_ratio = 0.5 if shell_3_ratio == 0 else shell_3_ratio
shell_4_ratio = 0.5 if shell_4_ratio == 0 else shell_4_ratio
shell_5_ratio = 0.5 if shell_5_ratio == 0 else shell_5_ratio
shell_6_ratio = 0.5 if shell_6_ratio == 0 else shell_6_ratio
shell_7_ratio = 0.5 if shell_7_ratio == 0 else shell_7_ratio
max_electron_count = 0.5 if max_electron_count == 0 else max_electron_count
whole_natural_ratio = 0.5 if whole_natural_ratio == 0 else whole_natural_ratio
whole_shell_ratio = 0.5 if whole_shell_ratio == 0 else whole_shell_ratio
easepoint = 0.5 if easepoint == 0 else easepoint
easepoint = 0.5 if easepoint == 0 else easepoint
easepoint_sub_ratio = 0.5 if easepoint_sub_ratio == 0 else easepoint_sub_ratio
L1 = 0.5 if L1 == 0 else L1
L2 = 0.5 if L2 == 0 else L2
L3 = 0.5 if L3 == 0 else L3
L1_third_body_no_impedance = 0.5 if L1_third_body_no_impedance == 0 
else L1_third_body_no_impedance
L2_third_body_earth_to_jupiter = 0.5 if L2_third_body_earth_to_jupiter == 0 
else L2_third_body_earth_to_jupiter
L2_third_body_no_impedance = 0.5 if L2_third_body_no_impedance == 0 
else L2_third_body_no_impedance
L3_third_body_no_impedance = 0.5 if L3_third_body_no_impedance == 0 
else L3_third_body_no_impedance
wave_falloff_for_original_system = 0.5 if wave_falloff_for_original_system == 0 
else wave_falloff_for_original_system
wave_falloff_os_ratio_check = 0.5 if wave_falloff_os_ratio_check == 0 
else wave_falloff_os_ratio_check
au_count_for_falloff = 0.5 if au_count_for_falloff == 0 else au_count_for_falloff
orbital_follow_np = 0.5 if orbital_follow_np == 0 else orbital_follow_np
orbital_follow_n = 0.5 if orbital_follow_n == 0 else orbital_follow_n
shell_full_count = 0.5 if shell_full_count == 0 else shell_full_count


#-----------------#


print("\n---\n\n"

      "Input Ratios:\n\n"
      
      "             Initial Entry is {0}.\n"
      "             Baselimiter is {1}.\n"
      "             DS Syncopation 4/5 is {2}.\n"
      "             Shell Half is {3}\n"
      "             Sub Divide From Ceiling {4}.\n"
      "             Syncopation Point is {5}.\n"
      "             Whole Ratio Combine is {6}\n"
      "             Whole Ratio is {7}\n\n\n"
      
      "*Base Limiter and Sub Ratio are quarter ratios based on the inputs;\n"
      " Using Distance Traveled (N), And Remaining Points 
      " or Distances From The Initial Entry (NP)\n"
      " They are functions of addition in that Baselimiter" 
      "+ Sub Ratio gives you the whole ratio to the input.\n\n"
     
      "---\n\n"

      " Amplitude Ratios:\n\n"

      "             Max Electron Count is {30}\n\n"

      "             Shell 1 Ratio is {14}\n"
      "             Shell 2 Ratio is {15}\n"
      "             Shell 3 Ratio is {16}\n"
      "             Shell 4 Ratio is {17}\n"
      "             Shell 5 Ratio is {18}\n"
      "             Shell 6 Ratio is {19}\n"
      "             Shell 7 Ratio is {20}\n\n"

      "Whole Natural Ratio is {21}\n"
      "Whole Shell Ratio is {22}\n\n"
     
      "---\n"

      "      Orbit Plots:\n\n"
      
      "             Wave Falloff for Original System Ratio Check is {23}\n"
      "             Wave Falloff for Original System is {24}\n"
      "             AU Count For Original System is {29}\n\n"

      "             Orbital Easepoint is {8}.\n\n"
      "             Easepoint Subdivide is {9}\n"
      "             Easepoint Sub Ratio is {10}\n\n"
      "             L1 as a radius from the input (Nucleus) is {11}.\n"
      "             L2 as a radius from the input (Nucleus) is {12}.\n"
      "             L3 as a radius from the input (Nucleus) is {13}.\n\n"
      
      "             Second Body L1 as a radius from n is {25}\n"
      "             Second Body L2 as a radius from n is {26}\n"
      "             Earth to Moon L2 with Jupiter included is {27}\n"
      "             Second Body L3 as a radius from n is {28}\n\n"
      
      "These are locations for orbitals, where the extensions of the 
system follow syncopations.\n\n\n"


.format
        (init #0
         , baselimiter #1
         , ds_syncopation_4_5 #2
         , shell_half #3
         , sub_divide_from_ceiling #4
         , syncopation_point #5
         , whole_ratio_combine #6
         , whole_ratio #7
         , easepoint #8
         , easepoint_subdivide #9
         , easepoint_sub_ratio #10
         , L1 #11
         , L2 #12
         , L3 #13
         , shell_1_ratio #14
         , shell_2_ratio #15
         , shell_3_ratio #16
         , shell_4_ratio #17
         , shell_5_ratio #18
         , shell_6_ratio #19
         , shell_7_ratio #20
         , whole_natural_ratio #21
         , whole_shell_ratio #22
         , wave_falloff_os_ratio_check #23
         , wave_falloff_for_original_system #24
         , L1_third_body_no_impedance #25
         , L2_third_body_no_impedance #26
         , L2_third_body_earth_to_jupiter #27
         , L3_third_body_no_impedance #28
         , au_count_for_falloff #29
         , max_electron_count)) #30