NP Time Independent (Point Based) Calculations

The items in this specific post are old iterations, and some of these formulas are obsolete. This has been left here for reference purposes. Please see Letter for Science and/or notebook for more recent formulas or ideas.

Stationary Ellipses (Limiter/Maximum)

(n + in(np) – in) / np

Calculating 3 Points (Reverse/Exact Point)

-in + ( n + np (in) – in) / np * 2

Calculating The 4th Point (Reverse/Exact Point):

-in + ( n + np (in) – in) / np * 2)
——————————————–
( n + np (in) – in) / np ) * 2in + ( -2n + np ); * (n(np))

Or (denominator):

(( n + np (in) – in) / np ) * 2in + ( -2n + np ))

* (n(np))

Please note this equation pulls from itself. The final calculation is the answer of the bottom line (denominator) multiplied by N(NP); where say the answer comes to .1333333, it is then brought up to its whole number by multiplying it through a factor of (n(np).

Legend:

 N = Point 2 (b) Traveled From 0 Axis IN = Total Distance Traveled From First And Last Point NP = New Point Distance (Final) From First Point

 ( n + in (np) – in ) / np Stationary Ellipses (Limiter/Maximum) Determination -in + ( n + np (in) – in) / np * 2 Calculating 3 Points (Reverse/Exact Point) Lookup (( -in + ( n + np (in) – in) / np * 2)) / (( n + np (in) – in) / np ) * 2in + ( -2n + np ); * (n(np)) Calculating 4th Point (Reverse/Exact Point) Lookup ip + in (np) – in / np equals 0 – Incomplete n + (np-2n) FFT rewrite – Incomplete Determination (( n + np (in) – in) / np ) *2) * 2in + ( -2n + np )) * 1/3 needs compressor Alteration * 1/3 0.85174 Turning 7 into 6: 2in + ( -2n + np )) and /np Balancing (( n + np (in) – in) / np ) * 2in + ( -2n + np )) * (1 1/3) – 2) / 6 (((( n + np (in) – in) / np ) * 2in + ( -2n + np )) /np + ( -n + np ))) *2) * 3 * 2 * 10 (( n + np (in) – in) / np ) * 2in + ( -2n + np )) (( -in + ( n + np (in) – in) / np * 2)) / (( n + np (in) – in) / np ) * 2in + ( -2n + np )* (n(np)) broken (( n + np (in) – in) / np ) * 2in + ( -2n + np )) / ((-in + ( n + np (in) – in) / np * 2in – n)) broken -in + ( n + np (in) – in) / np * 2in – n ( n + np (in) – in) / np ) * 2in + ( -2n + np )) broken

Examples of currently working point combinations: